RSS Newshttp://en_ENFri, 23 Oct 2020 01:35:05 +0200Fri, 23 Oct 2020 01:35:05 +0200typo3news-2076Thu, 15 Oct 2020 13:24:15 +0200CSEM: Alexandre Pauchard to succeed Mario El-Khoury as the new CEO of CSEMhttps://bayern-photonics.de/The Board of Directors has appointed Alexandre Pauchard as the new Chief Executive Officer (CEO) of CSEM. His appointment will be effective as of 18 January 2021. He will succeed Mario El-Khoury, who has successfully led the Center since 2009.CSEM is opening a new chapter. After 11 years at the helm of the Center, Mario El-Khoury, 57, is leaving his position as the head of CSEM to devote himself to personal projects. He is to be replaced by Alexandre Pauchard, who currently works for BOBST.

Arriving at CSEM in 1994, Mario El-Khoury, a Lebanese-Swiss engineer, held multiple leadership and executive positions before being appointed the role of CEO in 2009. Through his direction, he successfully managed to position CSEM as a key player in the development and transfer of cutting-edge technologies to benefit Swiss companies. A champion of innovation in all its forms and a passionate advocate for maintaining production in Switzerland, he has initiated several strategies aimed at digitizing Swiss SMEs to guarantee their competitiveness.

Under his leadership, CSEM has experienced unprecedented growth and development, with the number of employees increasing from 387 to 525. In 2013, he successfully established CSEM’s PV-Center, which fosters innovation in photovoltaics. He encouraged the Center’s growth in the MedTech and Additive Manufacturing domains and recently helped oversee the launch of the Tissot T-Touch Connect Solar, Switzerland's first connected watch, whose operating system and watch dial were developed at CSEM.

“Mario El-Khoury is an extraordinary director, who has allowed CSEM to shine both internationally and in Switzerland. We are extremely grateful on many levels for the excellent work he has done for us,” acknowledges Claude Nicollier, Chairman of the Board of Directors. “Working within this unique and magnificent organization has been an exceptional opportunity,” adds Mario El-Khoury, “my gratitude goes out to my colleagues, Chairman Claude Nicollier, and the members of the Board of Directors. Their unwavering support has enabled CSEM to strive for excellence without losing its humanity.”

Head of Group R&D at BOBST, Alexandre Pauchard, 49, will take over the reins of the Center on the 18 January 2021. He will jointly manage CSEM alongside Mario El-Khoury until Mr. El-Khoury’s departure on 28 February 2021. Alexandre Pauchard has lived in both California and Zurich, graduated with a degree in Physics from ETH Zürich, and holds a doctorate in microengineering from EPFL. He brings with him to CSEM extensive technical and managerial experience, and his dynamism perfectly complements the Center, whose future operations seem set to continue along a steady path. “We are very enthusiastic about Alexandre’s appointment and look forward to working with this competent new leader,” says Claude Nicollier. “His past activities align exactly with CSEM’s areas of expertise, and his strong motivation to pursue the Center's objectives, ensuring it remains a center of technological excellence and innovation, and guaranteeing the transfer of our products and research to the Swiss industry gives us full confidence in CSEM’s future.”

Further information

Contact:
CSEM SA
Rue Jaquet-Droz 1
2002 Neuchâtel
Schweiz
Email: info(at)csem.ch
Internet:www.csem.ch

 

]]>
NewsFrom the member companiespress report
news-2045Thu, 10 Sep 2020 14:02:32 +0200GIGAHERTZ: UVC Radiometer for Germicidal UV Sources including 222nm Excimer Lampshttps://bayern-photonics.de/The new X1-1-UV-3727 radiometer is designed to accurately measure the far-UVC irradiance or dose produced by 222nm excimer lamps. This is in addition to the measurement of other germicidal UV source types including low pressure Hg lamps and UV LEDs. Each meter has a wide dynamic range and is supplied with a traceable calibration certificate from the ISO-17025 accredited Gigahertz-Optik laboratory. Far-UVC radiation, such as the 222nm produced by Kr-Cl excimer lamps, has been the subject of many studies and is known to be effective against a wide range of pathogens.  Significantly, it is also thought to offer less photobiological hazard because far-UVC light cannot penetrate human skin as deeply as the longer wavelength UV radiation produced by low pressure Hg lamps and UVC LEDs.

The X-1-1-UV-3727 radiometer measures UV-C irradiance over a very wide dynamic range from 0.002 µW / cm² to 1000 mW / cm² which permits the investigation of both germicidal efficacy as well as hazard.  It is supplied with calibrations at 222 nm for excimer lamps, 254 nm for low pressure Hg lamps, and wavelength dependent calibration factors given in 5 nm increments 250 nm to 300 nm for UV LEDs. The detector’s flat spectral responsivity ensures lowest measurement uncertainty irrespective of the precise wavelength of UV LEDs which inevitably varies according to operating conditions and manufacturing tolerances.

The handheld meter provides a real time display of irradiance (mW / cm²) or dose (mJ / cm²) and includes a peak-hold function. The device may also be operated via its USB interface with optional S-X1 software. To correctly measure irradiance the detector’s entrance optic is a diffuser with a cosine field of view. The detector is pre-aged to significantly reduce solarization effects that results from long term exposure to UV radiation.

Gigahertz-Optik operates an extensive calibration facility that is DIN EN ISO / IEC 17025 accredited. In addition to the absolute radiometric calibration, every UV radiometer produced by Gigahertz-Optik is individually calibrated with regard to its relative spectral responsivity. In accordance with CIE 220:2016 this enables spectral mismatch error to be corrected for, thereby reducing the overall measurement uncertainty.

Further Information

Contact:
GIGAHERTZ Optik Vertriebsgesellschaft für technische Optik mbH
An der Kälberweide 12
82299 Türkenfeld
E-Mail: info(at)gigahertz-optik.de
Internet: www.gigahertz-optik.de

]]>
NewsFrom the member companiesNew productspress report
news-2035Mon, 31 Aug 2020 15:27:42 +0200SphereOptics: New UV Raman Spectrometerhttps://bayern-photonics.de/SpehreOptics partner Wasatch Photonics is proud to announce the addition of a compact, costeffective UV Raman spectrometer to its family of modular Raman spectroscopy products. The WP248 Raman spectrometer expands on the company’s existing range of high sensitivity research and OEM Raman solutions spanning 405 to 1064 nm. Use of UV excitation makes the WP 248 ideal for fluorescence-free Raman spectroscopy, as well as UV resonance Raman (UVRR) to enhance sensitivity and selectivity. Applications range from materials analysis to UVRR studies of structure and dynamics in biomolecules such as proteins and nucleic acids.The WP 248 is a stand-alone UV Raman spectrometer with free space input and an f/2.0 numerical aperture for superior signal collection and high throughput detection. It covers a range of 400 to 3200 cm-1 with 14 cm-1 resolution, and employs a UV-enhanced CCD for detection. It is designed for use with a compact 248.6 nm NeCu laser, and comes with a triggering cable to synchronize acquisition with the laser. Data collection and spectrometer control is included through the company’s own ENLIGHTEN™ operating software and software development kits C/C++, C#, Python, LabVIEW, MATLAB, and other languages.
UV Raman offers several unique advantages for applications that may be challenging using visible and NIR excitation wavelengths. By exciting and collecting Raman spectra at wavelengths below 300 nm, UV Raman avoids interfering signal caused by native autofluorescence from the sample. This improves signal to noise for highly fluorescing samples, and enables trace detection of analytes within a more complex sample matrix.
Careful choice of excitation wavelength can also enable UV resonance Raman (UVRR) spectroscopy, which offers 102-106 signal enhancement for select analytes, or specific subgroups within biomolecules. This combination of enhanced sensitivity and selectivity is invaluable in the study of structure, dynamics, and interactions of proteins and nucleic acids, and has contributed to our understanding of protein folding.
Wasatch Photonics’ new WP 248 Raman spectrometer offers high sensitivity in a compact footprint for modular UV Raman and UVRR spectroscopy. It covers both the fingerprint and functional range with choice of uncooled and TEC-regulated detector, and can be user-reconfigured with choice of free-space input or integrated lens.

Contact:
SphereOptics GmbH
Gewerbestrasse 13  
82211 Herrsching
E-Mail: info@sphereoptics.de
Internet: www.sphereoptics.de

]]>
NewsFrom the member companiespress report
news-2024Mon, 17 Aug 2020 14:53:31 +0200Multiphoton: Change in the Management of Multiphoton Optics GmbHhttps://bayern-photonics.de/Würzburg, August 13, 2020 Dr. Boris Neubert and Dr. Benedikt Stender have been appointed to the new Managing Directors of Multiphoton Optics GmbH with effect from August 11, 2020. The two new heads at management level replace the company's co-founder Dr. Ruth Houbertz, who has been in charge of the company's fortunes since 2014 in her role as Managing Director, and who has continuously developed the innovative high-tech company into a globally active solution provider in the field of 3D lithography during the recent years, whose interdisciplinary team of experts offers world-class technical support in the implementation of 3D lithography into standard manufacturing processes: From the first design idea to prototyping and engineering, via small series to industrial series production, with the aim of establishing Multiphoton Optics in the industrial environment as an innovative supplier of equipment technology for the production of products of the 21st century.Dr. Houbertz will continue to be available to the company and to the customers and partners of Multiphoton Optics with her profound know-how and experience in an advisory role.
„I would like to thank the team of Multiphoton Optics for the excellent support offered to me during the last years, and wish you continued success “, so the words of Ruth Houbertz. Her advice to the new management: „Those who follow in the footsteps of others leave no trace of their own. “
"We would like to thank Ruth Houbertz very much for her pioneering work, her great and tireless commitment to Multiphoton Optics GmbH and the cooperation in the team ", says Dr. Benedikt Stender.
We are also pleased that we were able to engage Dr. Boris Neubert and Dr. Benedikt Stender, two long-standing employees and thus experienced experts, as new managing directors of Multiphoton Optics.
Dr. Boris Neubert has many years of experience in the areas of business development and strategy, product management, sales, organization and finance. Since 2014, he has been a shareholder of Multiphoton Optics in the company as COO and CMO for the management of the operational business, including the management and organization of the entire operational processes, operational services and marketing. Dr. Benedikt Stender, who has been working as CTO since 2016, has driven the optimization of 2PP technology to industrial market maturity. Driven by its proximity to customers with the aim of solving their problems and his deep technical background in printed optics and electronics as well as in quantum technologies, his focus is on opening up new applications and markets.
This realignment sets the course for further growth in the company. We are convinced that Dr. Boris Neubert and Dr. Benedikt Stender, together with the Multiphoton Optics team, will continue the successful work of the recent years and further develop the company.

Contact:
Multiphoton Optics GmbH
Friedrich-Bergius-Ring 15
D-97076 Würzburg
E-Mail: press(at)multiphoton.de
Internet: https://multiphoton.net

]]>
NewsFrom the member companiespress report
news-2013Mon, 03 Aug 2020 09:23:40 +0200TOPTICA: World Record CEP-Noise https://bayern-photonics.de/Since its first demonstration the frequency comb has evolved into a versatile optical tool. Today, TOPTICA’s Difference Frequency Comb DFC enables applications like high resolution spectroscopy, optical clocks or low-noise microwave generation.20 years ago, John L. Hall (Nobel laureate together with Theodor Hänsch “for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique”) and coworkers published a seminal paper1, in which they first reported on the stabilization of the carrier-envelope phase of the pulses of a femtosecond mode-locked laser.
With the Difference Frequency Comb DFC, TOPTICA has taken the next step. Using difference-frequency generation (DFG), the carrier-envelope phase is now stabilized for each pulse individually with an intrinsic locking bandwidth identical to the repetition rate of 200 MHz. The result is an unprecedented low level of carrier-envelope phase noise of only 135 mrad integrated from 70 mHz to 40 MHz. The DFG process is key for achieving such high-end performance. It also delivers a new level of robustness, which allows for reliable long-term operation.
Moreover, the DFC product line offers a very user-friendly control interface and comes in a compact 19-inch format. The unique combination of these properties turn it into the ideal source for the most demanding comb applications no matter if you are a comb expert or if you are discovering the field.

For more information visit the TOPTICA Difference Frequency Comb webpage

Contact:
TOPTICA Photonics AG
Lochhammer Schlag 19
82166 Graefelfing
E-Mail: info(at)toptica.com
Internet: www.toptica.com

 

 

]]>
NewsFrom the member companiespress report
news-1972Mon, 22 Jun 2020 09:36:29 +0200Gigahertz-Optik: Innovative spectrometer system for determining the scattering and absorption coefficients of turbid mediahttps://bayern-photonics.de/With the new and unique SphereSpectro 150H spectrometer system, Gigahertz-Optik offers a solution for simultaneously determining the spectral absorption and scattering coefficients for scattering samples. Conventional spectrophotometers (also called transmission spectrometers or absorption spectrometers) are used to determine the absorption coefficient of clear or colored media. . In a similar way to these conventional systems, the SphereSpectro 150H is used to determine the spectral absorption coefficient of scattering media. To do this, the sample is illuminated and the transmitted as well as the reflected light is measured and evaluated in a differentiated manner using radiative transfer theory. For clear samples the absorption coefficient is determined based on Beer-Lambert's law. However, if the sample exhibits scattering (i.e turbid or translucent samples), the entire physical process must be taken into account, i.e. a combination of scattering and absorption properties.

With the innovative SphereSpectro 150H spectrometer system from Gigahertz-Optik the absolute absorption coefficient can now also be determined for scattering media independent of the scattering properties of the turbid medium. At the same time, the effective scattering coefficient of the sample is determined, which provides additional information about the microstructure of the sample. This is a unique feature, which is not otherwise available on the market. The determined absorption coefficient is identical with the absorption coefficient determined conventionally for clear media and can be used for content determinations, for example. The SphereSpectro 150H uses an integrating sphere to measure the total reflected and transmitted light of an illuminated sample. From these two quantities, the absorption coefficient and the effective scattering coefficient are calculated based on the radiative transfer equation.

The SphereSpectro 150H covers the wavelength range between 200 nm and 2150 nm. Modular versions are also available for sub-ranges within this entire spectral range. The unique measuring system is also characterized by simple operation, short measurement times and a large sample chamber with optimized sample holder whilst keeping overall size to a minimum.

Further information

Contact:
GIGAHERTZ Optik Vertriebsgesellschaft für technische Optik mbH
An der Kälberweide 12
82299 Türkenfeld
E-Mail: info(at)gigahertz-optik.de
Internet: www.gigahertz-optik.de

]]>
NewsFrom the member companiesNew productspress report
news-1997Mon, 13 Jul 2020 10:17:20 +0200OptoSigma: New office in Munichhttps://bayern-photonics.de/Today we have the pleasure to announce the opening of our new office in Munich, Germany. Please join us in welcoming our new Regional Sales Engineers who will be managing and supporting the office and Eastern European Region, Mr Axel Haunholter and Mr Andreas Bichler!This new OptoSigma office will be supporting customers in Germany, Switzerland, Austria, Poland, Czech Republic and Slovakia!

@Axel Haunholter, MS in Photonics and BS in Physics, has over 6 years’ experiences in the field of Photonics since he graduated from the Munich University of Applied Science. Axel’s success is due to his involvement and passion in his work.  He is always willing and pleased to support requirements and challenges from customers.
@Andreas Bichler, BS in Engineering, since he graduated from the Munich University of Applied Science, Andreas has always kept growing his experience in the Photonics and Engineering field. His attitude is always “Ready to help” customers. A highly customer-orientated mind-set which fits very well into OptoSigma’s company culture.

Contact:
www.optosigma.com

Right in the picture:
Axel Haunholter
+49 151 1230148
a.haunholter(at)optsigma-europe.com 

Left in the picture
Herr Andreas Bichle
+49 151 12309305
a.bichler(at)optosigma-europe.com

 

]]>
NewsFrom the member companiespress report
news-1957Thu, 04 Jun 2020 08:31:44 +0200TOPTICA: eagleyard Photonics rebrands into TOPTICA eagleyard https://bayern-photonics.de/TOPTICA Photonics has decided to rebrand its daughter company eagleyard Photonics into TOPTICA eagleyard. Eagleyard Photonics is a leading manufacturer of high end laser diodes in the red/infrared regime (630 nm – 1120 nm). eagleyard became part of the TOPTICA Photonics group in February 2013 and has since continued to operate separately under its own marketing brand and sales organization. Dr. Thomas Renner (CSO TOPTICA Photonics) comments „We have enjoyed the cooperation with our friends and partners in Berlin for many years now. The new common brand will reflect both strong market positions and create even more synergies“. The sales and distribution structure and website (www.toptica-eagleyard.com) however will remain unchanged and independent. The legal address and company leadership of eagleyard Photonics GmbH will also remain unchanged. Michael Kneier, VP Sales at TOPTICA eagleyard adds: „We are very happy to combine our two strong brands. This gives us the opportunity to address even more markets with our strong technology and OEM capabilities for laser diodes“. TOPTICA eagleyard focuses on laser diodes (components) – e.g. DFB’s, single mode, multi-mode, gain chip and tapered amplifier laser diodes for industry, life science, aerospace, defense and research. TOPTICA Photonics AG focusses on lasers – e.g. diode lasers, femtosecond fiber lasers, frequency combs, THz systems etc. for quantum technology, biophotonics and materials inspection/processing. TOPTICA eagleyard, with almost 50 employees, is located in Berlin/Adlershof in near vicinity of the Ferdinand-Braun-Institute (FBH), which is a close cooperation partner.

Kontakt:
TOPTICA Photonics AG
Lochhammer Schlag 19
82166 Graefelfing
E-Mail: info(at)toptica.com
Internet: www.toptica.com

 

]]>
NewsFrom the netsFrom the member companiespress report
news-1956Wed, 03 Jun 2020 22:02:02 +0200Sphere Optics: Shutter modules from Nanomotion for infrared camerashttps://bayern-photonics.de/Improved accuracy of remote temperature measurements for fever detection The RS08 from Nanomotion is a rotary, piezoelectric shutter that is being deployed in infrared cameras to improve the accuracy of remote temperature measurements. It is the first shutter of its kind, utilizing Nanomotion’s patented miniature piezo motor embedded in an 8 mm x 20 mm housing including the drive electronics. The shutter features silent operation (~15dB) combined with fast travel speeds of the blade (90° in 130 ms). Its compact design and low weight of merely 3.6 g enable easy integration in any camera systems. The RS08 uses a blade with high emissivity (>94%) conforming closely to the ideal Planckian black body. It therefore provides reference values, thus reducing the uncertainty of the ambient environment, for a reliable temperature reading of infrared cameras. In that regard, remote fever detection by means of handheld or stationary thermal imagers is an important application. In addition, the RS08 can be used for non-uniformity correction (NUC).
Nanomotion is a leading manufacturer of precise, piezoelectric motion systems for a variety of
applications. SphereOptics GmbH is distributor for Nanomotion in Germany, Austria and Switzerland.

Contact:
SphereOptics GmbH
Gewerbestr. 13
82211 Herrsching am Ammersee
E-Mail: info@sphereoptics.de
Internet: www.sphereoptics.de

 

]]>
NewsFrom the member companiesNew productspress report
news-1919Mon, 04 May 2020 12:30:10 +0200New: Enhanced flicker frequency range, BTS256-EF now measures up to 40 kHzhttps://bayern-photonics.de/The lighting industry requires very versatile and reliable measurement devices when spectral light and flicker meters are concerned. The field of measurement applications and quantities is very broad: Besides illuminance and spectrum, there are many additional, more specialized properties of light sources that need to be measured like their performance in context with human centric lighting (HCL), their flicker properties, their efficiency in plant growth and many more. In all of those applications, it is crucial that the meter needs to be reliable and precise.The BTS256-EF by Gigahertz-Optik GmbH, a well-known measuring device manufacturer, has already been up to that challenge for many years. It offers a wide selection of measuring quantities relevant in general lighting and hence acts as universal measuring device in its field. Now, the device has been updated to record and analyze even higher flicker frequencies than before: It supports signal sampling with up to 40 kHz.

Furthermore, this enhancement does not only apply to brand-new devices: By applying the latest firmware and software updates, this new feature also becomes available for devices that have been out in the field for many years. Updates are offered on request. 

Further information

Contact:
GIGAHERTZ Optik Vertriebsgesellschaft für technische Optik mbH
An der Kälberweide 12
82299 Türkenfeld
E-Mail: info(at)gigahertz-optik.de
Internet: www.gigahertz-optik.de

]]>
NewsFrom the member companiesNew productspress report
news-1895Thu, 09 Apr 2020 10:07:00 +0200Gigahertz-Optik - UV-C Radiometer for disinfection effectiveness and safety of UV-C LEDs and germicidal lamps https://bayern-photonics.de/The X1-1-UV-3726 radiometer enables the effectiveness of UV germicidal irradiation (UVGI) to be accurately determined for both low pressure mercury (254nm) germicidal lamps and UV-C LEDs. Additionally, the device has sufficient sensitivity to detect if undesired exposure poses a photobiological safety risk to users.UVGI is a sterilization method that uses UV-C light to break down microorganisms such as viruses and bacteria by altering their DNA and RNA, rendering them unable to replicate. The germicidal effectiveness of UV-C radiation depends on its dose (µJ / cm2) and wavelength. The dose is determined by measuring the irradiance (µW / cm2) and duration of exposure. The effectiveness of germicidal activity is wavelength dependent with a maximum around 265 nm which makes the potential germicidal efficacy of available UV-C LEDs greater than 254 nm emission Hg lamps.

The X-1-1-UV-3726 radiometer measures UV-C irradiance over a very wide dynamic range to beyond 100 mW / cm² with a resolution of 0.0001 µW / cm².  It is calibrated for its spectral responsivity from 250 nm to 300 nm. Wavelength dependent calibration factors given in 5 nm increments are incorporated for measuring UV LEDs with known nominal wavelength. Additionally, a 254 nm calibration is included for Hg lamps as well as a general purpose 260 nm to 290 nm calibration for non-specific UV-C LEDs.

The X1-1-UV-3726 offers sufficient sensitivity to check for safety compliance and the effectiveness of personal protection equipment (PPE) in accordance with the accepted occupational exposure limit to actinic UV (ICNIRP). This requires irradiance levels to be < 0.2 µW/cm2 at 254 nm and < 0.1 µW/cm2 at 270 nm over 8 hour’s exposure.

The handheld meter provides a real time display of irradiance or dose and includes a peak-hold function. The device may also be operated via its USB interface. Each meter is supplied with a traceable calibration certificate from the Gigahertz-Optik laboratory.
https://www.gigahertz-optik.de/en-us/product/x1-1-uv-3726

Contact:
GIGAHERTZ Optik Vertriebsgesellschaft für technische Optik mbH
An der Kälberweide 12
82299 Türkenfeld
E-Mail: info(at)gigahertz-optik.de
Internet: www.gigahertz-optik.de

]]>
NewsFrom the member companiespress report
news-1865Mon, 16 Mar 2020 08:42:03 +0100TOPTICA Photonics introduces Laser Rack Systemshttps://bayern-photonics.de/TOPTICA Photonics AG releases quantum-technology-approved laser modules for industrial rack integration: narrow-linewidth tunable diode lasers, amplified or frequency-converted diode lasers, frequency combs, and related accessories. A new era begins. After more than five thousand installed lasers in scientific laboratories, TOPTICA Photonics AG releases quantum-technology-approved laser modules for industrial rack integration. The novel product family includes narrow-linewidth tunable diode lasers, amplified or frequency-converted diode lasers, frequency combs, and related accessories.

The T-RACK – TOPTICA’s high quality, rugged 19” cabinet with modular power entry unit, professional cable and heat management – can house a multitude of different modules. All of these laser modules consist of a laser head with fiber-coupled optical output and are equipped with the renowned digital laser controller DLC pro. They are conveniently and reliably operated, easily remotely controlled and offer ultimate performance, previously only possible for operation in research-grade laboratories on optical tables.

Key features:

  • Rack-mountable & rack-mounted diode laser and frequency comb modules
  • Fiber-coupled optical output of 330..1625 nm
  • Convenient remote control
  • Complete solutions based on different subsystems including frequency stabilization
  • Quantum-technology-approved performance in industrial footprint

Based on its profound expertise in quantum technology, TOPTICA also offers complete rack laser systems: dedicated or customized solutions that work perfectly together from day one.

For any further information please consult our web page at: www.toptica.com/T-RACK

Contact:
TOPTICA Photonics AG
Lochhamer Schlag 19
82166 Graefelfing, Germany
E-Mail: info(at)toptica.com
Internet: www.toptica.com

]]>
NewsFrom the member companiespress report
news-1852Mon, 09 Mar 2020 10:02:09 +0100Menlo Systems - New office in Southern Californiahttps://bayern-photonics.de/Menlo Systems, the world’s leading manufacturer of optical frequency comb and laser stabilization technology, announced the opening of a new regional office located in Huntington Beach, CA. The new location strengthens Menlo Systems´ presence in the North American market and will serve as a strategic hub for Sales, Service and Technical Support for its future and established customer base.Menlo Systems is dedicated to bring its core competencies and expertise in femtosecond fiber laser technology to North America to serve emerging markets and applications. While the foundation of Menlo Systems is based on its Nobel Prize winning Optical Frequency Combs, the company also provides solutions for time and frequency distribution, ultrastable lasers, terahertz systems, and femtosecond lasers. The new Western Regional office is a testament to Menlo Systems’ continued growth and its commitment to its valued customers.

“The expansion of our US operations was a logical next step to heighten our exposure and is in line with our overall growth strategy.” said Simon Kocur, Director of Sales and Service Menlo USA. “Menlo Systems has seen a significant increase in demand due to its unparalleled expertise in Optical Precision Metrology. This new location will be instrumental in meeting our partners and customers needs in the western part of the US. It will enable us to fulfill our mission to be at the forefront of emerging and exciting new applications.”

Kontakt:
Menlo Systems
E-Mail: ussales(at)menlosystems.com
Internet: www.menlosystems.com

]]>
NewsFrom the member companiespress report
news-1807Fri, 24 Jan 2020 22:42:26 +0100LASER COMPONENTS Takes the Initiativehttps://bayern-photonics.de/Application for RoHS Exemption for PbX Detectors CompletedTogether with customers at home and abroad, LASER COMPONENTS has taken a leading role in the industry and made every effort to ensure that the supply of PbX detectors remains secure. These companies have applied for exemption from the RoHS regulations in Brussels.

The EU directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS 2) contains a list of chemical elements and compounds that may no longer be used in electronic products. This includes lead in concentrations above 0.1%. The legislators are primarily concerned with tin solder that contains lead. However, this heavy metal is also a crucial component in the PbS and PbSe detectors manufactured by the LASER COMPONENTS Detector Group.

Manufacturers can apply for exemptions from this rule if a product is indispensable for certain applications. Annex IV, point 1c of the directive explicitly mentions lead used in infrared detectors. Together with its customers, LASER COMPONENTS has formed a consortium that has been able to prove that an alternative to using lead salt detectors in certain areas is not available.

“Many SMEs would simply be overwhelmed with the burden of EU law if they tried to take it on themselves,” says Sven Schreiber, who coordinated the activities at LASER COMPONENTS. “As a well-known player in the international detector market, we have taken the initiative. We are confident that our application will be granted. This would benefit all market participants for another seven years. At that time, the exemption will be renewed.”

>> More information

Your contact person:
Walter Fiedler
+49 (0) 8142 2864-729
w.fiedler(at)lasercomponents.com

 

]]>
news-1805Fri, 24 Jan 2020 22:10:11 +0100Optical frequency measurement to the 21st significant digithttps://bayern-photonics.de/TOPTICA’s frequency comb DFC CORE+ demonstrates world record stability, as reported in an article by scientists of the Physikalisch-Technische Bundesanstalt (PTB) Braunschweig, Germany and TOPTICA.TOPTICA’s frequency comb DFC CORE+ demonstrates world record stability, as reported in an article by scientists of the Physikalisch-Technische Bundesanstalt (PTB) Braunschweig, Germany and TOPTICA.

This paves the way for a future improvement of some of the most sensitive instruments ever created: optical clocks and gravitational wave detectors. Both benefit from transferring the ultimate stability to a specific wavelength.

Read the text online. Download a high-resolution image here.

TOPTICA Photonics AG
Lochhamer Schlag 19
82166 Graefelfing, Germany
www.toptica.com

---------------------------------------

TOPTICA has been developing and manufacturing high-end laser systems for scientific and industrial applications for 20 years. Our portfolio includes diode lasers, ultrafast fiber lasers, terahertz systems and frequency combs. The systems are used for demanding applications in biophotonics, industrial metrology and quantum technology. TOPTICA is renowned for providing the widest wavelength coverage of diode lasers on the market, providing high-power lasers even at exotic wavelengths.
Today, TOPTICA employs 300 people worldwide in six business units (TOPTICA Photonics AG, eagleyard Photonics GmbH, TOPTICA Projects GmbH, TOPTICA Photonics Inc. USA, TOPTICA Photonics K.K. Japan, and TOPTICA Photonics China) with a consolidated group turnover of € 60 million.

]]>
news-1811Fri, 24 Jan 2020 20:57:00 +0100Instrument Systems: New spectroradiometer speeds up LED productionhttps://bayern-photonics.de/The new CAS 125 spectroradiometer with CMOS sensor is designed to maximize production efficiency and offers a unique “Recipe” mode that enables time-optimized control. Munich, January 2020 – Product life cycles are getting shorter all the time. The corresponding increase in the number of product variants presents manufacturing companies with new challenges. Production lines need to be faster and more complex, yet also more user-friendly. Instrument Systems – a well-known manufacturer of light measurement technology – works closely with its customers in the field of LED production to develop modular and flexible components for quality inspection in mass production environments. For the new spectroradiometer CAS 125, Instrument Systems has therefore focused on production-related applications for LEDs in the spectral range between 200 and 1100 nm. Instrument Systems will be presenting its new measurement device for the first time at booth 716 of Strategies in Light trade show, which will be held in San Diego from 11 to 13 February, 2020.

For the CAS 125 spectroradiometer, Instrument Systems decided to equip the device with a CMOS sensor that is linked to a specially developed electronic readout circuit. This combination enables very low measurement times of 0.01 milliseconds while simultaneously optimizing long-term stability. The spectrograph design is based on the high-end CAS 140D device, which is already well established in the market. This gives the CAS 125 a level of optical performance comparable to that of the CAS 140D in terms of both stray light suppression and optical throughput. The device-specific electronic readout circuit enables time-optimized control of the spectrometer through parameterization of successive measurements in Recipe mode on the CAS 125. This eliminates the time-consuming step of communicating with the PC to initialize each subsequent stage of the measurement process.

Another unique feature of the CAS 125 sensor is its built-in temperature stabilization feature. This results in dark current behavior that is independent of the ambient conditions, enabling the CAS 125 to ensure optimum long-term stability even in environments where temperatures fluctuate. A further highlight is the ability to parameterize the flash trigger. This element helps users synchronize the spectrometer with other system components, for example by triggering a photodiode measurement.

These key features – temperature stabilization and Recipe mode – are two of the CAS 125’s unique selling points. They significantly improve automated processes in LED production, thus boosting productivity.

www.instrumentsystems.com

Company portrait of Instrument Systems GmbH
Instrument Systems GmbH, founded in Munich in 1986, develops, manufactures and markets all-in-one solutions for light measurement applications. Its core products are array spectrometers and imaging colorimeters. The company’s main fields of activity are LED/SSL and display metrology, spectral radiometry and photometry, where today Instrument Systems is one of the world’s leading manufacturers. The Optronik line of products for the automotive industry and traffic technology is developed and marketed at its Berlin facility. Instrument Systems has been a wholly-owned subsidiary of the Konica MinoIta Group since 2012.

]]>
news-1815Fri, 24 Jan 2020 12:29:00 +0100Multiphoton Optics closes production agreement with nanoplus Nanosystems and Technologies GmbH https://bayern-photonics.de/On December 16, 2019, nanoplus Nanosystems and Technologies GmbH (nanoplus) from Gerbrunn and Multiphoton Optics GmbH from Würzburg closed a production agreement to produce miniaturized optics on laser sources for IR sensor technology using MPO technology. This is the first time that the two-photon polymerization (2PP) process of pioneer MPO is used worldwide for the industrial production of miniaturized components in a pay-per-use model.The lasers manufactured by nanoplus are used for high-precision measurements in industry and research. In the market for infrared sensors, the manufacturers of the sensors so far had the problem that they had to perform complex packaging and alignment steps. This increases the production costs and prevents miniaturized sensors required by the market. Multiphoton Optics’ High Precision 3D Printing process, also known as 3D Lithography or Direct Laser Writing, additively manufactures the required microoptics directly onto the laser facets.

“Multiphoton Optics’ technology allows us to inexpensively offer miniaturized laser sources for infrared sensing. This allows our customers to save time and money and build much more compact sensors.”, says Dr. Johannes Koeth, CEO of nanoplus.

The high-precision 3D printing from Multiphoton Optics is integrated into the existing production processes of nanoplus.

Dr. Ruth Houbertz, CEO & Managing Director of MPO, says: “In more than 15 years of collaboration with industrial customers, we have brought two-photon polymerization from research laboratories to practical industrial manufacturing. With our pay-per-use model, users drastically reduce their time to market, minimize their investment costs, and pay per manufactured quantities.“

www.multiphoton.net

www.nanoplus.com

]]>
news-1663Thu, 25 Jul 2019 14:52:04 +0200Sensors Expo: LASER COMPONENTS Wins “Best of Sensors” 2019 Awardhttps://bayern-photonics.de/LASER COMPONENTS, specialized provider of components and services in the laser and optoelectronics industry, has been named a “Best of Sensors” 2019 Award winner in the Automotive/Autonomous category. The company’s QuickSwitch Pulsed Laser Diode (PLD) was recognized as one of the Innovative Products of the Year 2019 which highlights cutting-edge advancements and achievements that are moving the sensors industry forward. Across fourteen categories, the prestigious awards were presented by the Editor of Fierce-Electronics during Sensors Expo & Conference 2019, held June 25-27, 2019 in San Jose, California.Based on LASER COMPONENTS’ proprietary compact hybrid configuration that integrates a 905 nm laser diode, switch and capacitor inside a TO56 metal housing, QuickSwitch can generate in one second up to 200,000 laser pulses with a typical duration of 2.5 ns. This is currently the fastest hybrid PLD solution available on the market allowing to collect data faster and higher resolution in laser-based distance measurement (LiDAR) applications that are finding their way into passenger vehicles. In the race to safer driving, automotive LiDAR sensor manufacturers will benefit from QuickSwitch to design more sensitive systems that warn drivers of hazards earlier, avoid collision, and ultimately facilitate autonomous drive.

“Our engineers’ innovative approach to minimize the inductance loop and to optimize the circuit layout for driving PLDs with fast rise times and short pulses is setting us apart from conventional designs,” says Mr. Matt Robinson, Sales Director of LASER COMPONENTS USA. “We are honored to receive this award in recognition of their dedication to deliver a unique product that meets current and future market needs,” Robinson added.

“For more than three decades Sensors Expo has been bringing together the most exciting technological advancements and cutting-edge applications from across the industry. The winners of this year’s Best of Sensors Awards underscore just how far-reaching the impacts of these innovations have become. LASER COMPONENTS personifies the commitment to engineering excellence and overall ingenuity we look for and we are thrilled to recognize their efforts in an extremely competitive field,” noted Cal Groton, Event Director, Sensors Expo & Conference.

This is the second award for LASER COMPONENTS’ QuickSwitch PLD in recent months. A previous recognition includes the Autonomous Vehicle Technology ACES Award in December, 2018.

 

More Information:

www.lasercomponents.com/us/product/quickswitch-pulsed-laser-diodes/

The Company:

LASER COMPONENTS specializes in the development, manufacture, and sale of components and services in the laser and optoelectronics industry. At LASER COMPONENTS, we have been serving customers since 1982 with sales branches in five different countries. We have been producing in house since 1986 with production facilities in Germany, Canada, and the United States. In-house production makes up approximately half of our sales revenue. A family-run business, we have more than 230 employees worldwide.

Contact:
Claudia Michalke
Tel: +49 8142 2864 – 0
c.michalke(at)lasercomponents.com

]]>
news-1605Tue, 28 May 2019 09:09:02 +0200Bavarian laser technology and photonics: technologies for the futurehttps://bayern-photonics.de/invest in bavaria: Laser technology has long been an innovation driver for various branches of industry and everyday applications and is expanding this role with a view to areas that will become more important in future, such as additive manufacturing and data transmission. Bavaria is well positioned for the future with its outstanding infrastructure in terms of laser technology. Laser sounds like the future – and rightly so. Laser technology has not only been directly linked to the technologies of the future since today. We have long been familiar with lasers from printers and barcode readers. They were once the technology of the future. On the other hand, the future is now with holography or data transmission using optical fibres. The same also applies to the promising additives manufacturing industry: a product is manufactured by applying a starting material layer by layer using a three-dimensional computer model. The material binds during the process and everyday objects or components for industry are ready.

Read more...

(c) invest in bavaria

]]>
news-1537Wed, 27 Mar 2019 12:34:32 +0100bayern photonics welcomes the company LIGHT CONVERSION as a new member.https://bayern-photonics.de/Light Conversion is a pioneer and worldwide leader of wavelength tunable femtosecond laser sources based on TOPAS and ORPHEUS series of optical parametric amplifiers (OPA) as well as diode pumped solid state femtosecond lasers PHAROS and CARBIDE. Established in 1994, as a spin-off from Vilnius University Laser Research Center, the company has built its strength on profound knowledge in the field of optical parametric generation and amplification. With more than 3000 systems installed worldwide, Light Conversion has established itself as one of the leading providers in the scientific field as well as in the industrial sector. Over a decade femtosecond laser PHAROS stands for reliability operating in rough 24/7 mode. The product portfolio ranges from standard autocorrelator systems, powerful and flexible ultrafast laser systems to custom built OPCPAs. Further information LIGHT CONVERSION can be found at:www.lightcon.com

]]>
news-1468Tue, 22 Jan 2019 11:39:57 +0100Autonomous System Measures the Smallest Signal Dropoutshttps://bayern-photonics.de/With the OP1100 discontinuity analyzer, LASER COMPONENTS presents an autonomous test system for detecting and recording dropouts in optical data transmission.The OptoTestdevice detects signal fluctuations of 0.5 dB and a duration of 0.8 μs. Up to 24 single-modeor multi-mode fibers can be monitored simultaneously.The events are recorded in a fast, high-resolution data logger. This allows experts to trackthe course of the dropout and draw conclusions about its cause.In addition to round-the-clock monitoring of fiber optic networks, the OP1100 is also suitablefor laboratory tests. Passive and active network components can be precisely checkedfor irregularities caused by temperature fluctuations, vibrations, and other shocks such assignal dropouts or temporary fluctuations in the output or transit signal.

» More Information

 

]]>
news-1240Fri, 06 Jul 2018 11:22:15 +020013th DLP(r) Technology Symposium - Save the Date / Call for Presentationshttps://bayern-photonics.de/The 13th International Symposium on Emerging and Industrial TI DLP® Technology Applications will be held at Congress Park CPH in Hanau (near Frankfurt, Germany) on October 23, 2018. The DLP Symposium is the established platform that aims to promote the dialogue and discussion between engineers, researchers, users and manufacturers/distributors in the field of innovative advanced light control optical solutions that can serve new markets. XIII International Symposium on Emerging and Industrial TI DLP® Technology Applications

We are glad to announce that the 13th International Symposium on Emerging and Industrial TI DLP® Technology Applications will be held at Congress Park CPH in Hanau (near Frankfurt, Germany) on October 23, 2018. The DLP symposium is the established platform that aims to promote the dialogue and discussion between engineers, researchers, users and manufacturers/distributors in the field of innovative advanced light control optical solutions that can serve new markets. The event is jointly organized by OpSys Project Consulting and the photonics innovation network Optence e.V.

CALL FOR PRESENTATIONS


DLP chips and associated development platforms are enabling many exciting new systems and applications beyond traditional display technologies. By bringing together scientists, technologists, and developers, the goal of this conference is to highlight new and interesting means of applying DLP technology to end applications within these emerging markets:

Topics of interest include, but are not limited to:

  • 3D machine vision (automated optical inspection (AOI), PCB quality inspection, robotics vision, factory automation, dental scanning, medical imaging and biometrics)
  • 3D printing (rapid prototyping, direct manufacturing, and tooling & casting)
  • Spectroscopy (oil & gas analysis, food & drug inspection, water & air quality, and chemical & material identification)
  • Lithography (printed circuit boards, flat panels, computer-to-plate printing, and laser marking)
  • DLP Pico™ video and data display (including smartphones & tablets, pico projectors, wearable displays, smart home displays, aftermarket head-up display, commercial gaming displays, and mobile smart TVs)
  • Technical aspects on subsystems and components comprised in DLP Systems (including light sources, optics, electronics, new product introductions)

Why submit a paper?

Get a large impact in the advanced light control community: Some 120 attendees and contributors from all over Europe, USA and Asia made the DLP symposium a huge success in 2015!

Please submit your contribution prior to August 15, 2018
to OpSys Project Consulting | Alfred Jacobsen |office(at)opsysconsult.com

Exhibition Space Offer

Seize the opportunity and register now for a table top presentation booth at the DLP Symposium exhibition area. Please find here information for the exhibition conditions including an application form. Please return order form by scanned copy to machemer(at)optence.de. Or confirm your requirements and preferences directly by e-mail.

]]>